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Abstract—The vibration analysis of plates using the multivariable spline element method is presented
in this paper. The spline functions are applied to construct bending moments. twisting moments
and transverse displacement field functions. The spline equations of eigenvalue problems with
multiple vartables of vibrition of plates are derived based on the Hellinger-Reissner mixed vari-
ational principle. For simplicity, the boundary conditions which consist of three local spline points
are amended to fit any specified boundary conditions. Several numerical solutions of plate vibration
analysis are presented which tlustrate the accuracy and convergence of the method.

INTRODUCTION

The spline finite element method has been developed in the last 10 years. Antes (1974) and
Shih (1979} presented bicubic splines as displacement functions for plate bending problems.
Mizusawa et al. (1979) used the bicubic spline functions to solve the vibration and buckling
problems for skew plates. Shen ef af. (1987), Shen and Wang (1989) and Shen and Huang
(1990) extended the spline element method for analysing static, dynamic vibration and
stability of stiffencd plate and shell problems. The spline element method with a single
variable for analysing plates and shells has fewer unknowns, a high degree of accuracy and
can be easily programmed, so it was successtully used to analyse certain types of structures
with a regular shape on a microcomputer.

Based on the development of the finite clement method, the mixed finite clement
method which is applicd to the plate and the plane stress-strain problems is presented in
Heremann (1967) and Mirza and Olson (1980). A kind of multivariable spline clement
method for analysing plate bending problems has been presented by Shen and Kan (1991,
In the present study, bicubic B splines have been used to construet the bending moments,
the twisting moments and the transverse displacement field functions in the analysis of the
vibration of plates. The spline clement vibration eigenvalue equations are derived based on
the Hellinger-Reissner mixed variational principle. To demonstrate the accuricy of this
method, several numerical examples are given. The proposed multivariable spline element
method is compared with other numerical methods. 1t is shown to be quite effective for the
solution of the vibration of plate problems.

SPLINE INTERPOLATE FUNCTIONS AND FIELD FUNCTIONS

In the multivariable spline finite clement method. the bending moments, the twisting
moments and the trunsverse displacement are all chosen as field functions. The field func-
tions of the plate are defined in the form of the Kronecker product of two B cubic spline
functions:
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==== K ronecker product of two matrices. i.e. [4] ® [B] = (a,[B]).

The parameter vectors {4}, {B}. {C} and {D} are all constants which are to be deter-
minated. Parameter vectors {8}, {C} and {D} are similar to parameter vector {A4}. The
basis of the splines can be written as follows:
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The figures of splines @(x), @;((x/hy—i). ¢(x), (i=—=1,0,1,... ., N+ 1) arc shown in
Figs 1, 2 and 3 where,
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In order to be simplified for the treatment of boundary conditions, for N = 4, the
linear combination of splines has been constructed for the first three splines and the last
three splines which are shown in Fig. 3.

At the left-hand point, x = 0, we have
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$.(0) =0, (i# -1),
¢ (0) =0, (i# —10).

At the right-hand point, x = a. we have

$:(a@) =0, (I#N+1),
bi(@) =0, (i#NN+1).

MIXED VARIATIONAL PRINCIPLE OF THIN PLATE

The mixed variational principle of thin plates is given by Hu (1981):
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In the case of homogencous boundary conditions, the mixed functional for vibration
problems becomes as follows

n, = JQJ‘ {M}"'{x}dxdy——J.J‘ §{M}"'[D]"{M}dxdy—fj YVow? dxdy, (9)
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m—mass density of plate, A—vibration eigenvalue of plate. If we take the moments and
displacements as variations to the mixed functional and make the variation of IT; equal to
zero, i.c. 01, = 0, we can obtain the equations including the equations of equilibrium,
boundary and geometry of the plate.

MULTIVARIABLE SPLINE VIBRATION EIGENMODE EQUATION OF PLATE

The bending moments, twisting moments and transverse displacements used as field
variables and the bicubic B; spline functions are used to construct the field functions with
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multiple variables. Taking eqns (1) and (2) and substituting them into eqn (9) and applying
the mixed energy principle, we have
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The matrices [K/] (x = x, ¥; i, j = 0,1,2) can be found in Shen and Wang (1986). From
eqn (14) we have the eigenvalue mode vector equation of the vibration analysis of plates
in the following form:

((H]'[F17'[H] =AM {D} = {0}. (19)

In egn (19), the kinematic boundary conditions are easily treated just like the finite element
method, but they do not relate to the displacements, only to the spline node parameters.

NUMERICAL EXAMPLES

Generally, by using refined meshes of spline knots and higher order splines, we can
obtain better approximate solutions using the multivariable spline element method.
However, the spline functions with more knots and higher order splines can accelerate the
convergence for numerical results, but more variables are involved which leads to excessive
CPU time, so that it is not suitable for practical computations. Based on our experience,
using the bicubic splines and meshes of 4x4, 6x 6, 8x 8, 10x 10 will provide enough
precision in numerical calculations.

Numerical examples were performed on a VAX-11/780 minicomputer. The proposed
method can be used to solve the vibration eigenvalue problems of plates. In the first example,
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Table 1. Frequencies of simply-supported plate

m.n Meshes M.S.EM. Warburton (1954)

(ST §x8 19.73381 19.74
-, 8x8 49.34739 49.35
Wy 8§x8 78.95469 78.95
[ 8x8 9%.70766 98.64

x*

@ =21/ L} D/my' *.
u=03.
M.S.E.M.—Multivariable Spline Element Method.

Table 2. Frequencies of plate with simply-supported edges for different

meshes
Meshes
44 19.73923 49.38513 79.01002 100.75174
6x6 19.73886 49.34992 78.95966 98.79032
8x8 19.73381 49.34739 78.95649 98.70766
* 19.74 49.35 78.95 98.64

* Warburton (1954).

Table 3. Frequencies of plate with fixed edges for different meshes

Meshes
4 x4 36.01731 73.74091 108.82559 134.59386
6x6 35.99366 7343199 108.32896 132.00426
8 x 8 3598793 73.40506 108.25762 131.64781
* 1599 73.41 108.3 131.6

* Blevins (1979).

Table 4. Frequencies of plite with two opposite edges simply supported and other edges fixed for

different meshes

Mueshes
4xd4 28.95979 54.8654 1 69.59309 94.90040 104.38136 131.90736
6x6 28.95244 54.76415 69.33943 94.62939 102.36386 12946341
Exy 28.95030 54.74785 69.32851 94.59936 102.24642 129.13942
. 28.95 54.74 69.32 94.59 102.2

* Blevins (1979).

Table 5. Freguencies of plate with one edge fixed and other three edges simply supported for

different meshes

Present Meshes
method
4dxd 23.65015 51.74423 58.74947 86.28145 102.36620
6x6 23.64658 51.68347 58.65156 85.15998 100.38531
8§x8 23.64513 51.67347 58.64604 86.14058 100.28543
* 23.64 51.67 58.65 86.13 100.3

* Blevins (1979).

simply supported with four edges is a square plate; the second example is also a square
plate with four fixed edges; the third and fourth examples are square plates with two

opposite edges simply supported and the other edges fixed.

The numerical results of the vibration analysis for the plates are shown in the tables.
In Table 1, the vibration frequencies are shown for a square plate with simply-supported
edges. In Table 2. the vibration frequencies for the meshes are shown. The results rapidly
converge to the exact solution. The lowest frequencies of different supported plates are

shown in Table 6.
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Table 6. Lowest frequencies of thin plate

Plate Mueshes MS.EM. Warburton (1954)
SSSS dx4 19.73923 19.74
6x6 19.73886
8x8 19.73381
FFFF Ix4 36.01731 35.99
6x6 35.99366
8x8 3598793
SFSF dx4 28.95979 28.95
6x6 28.95244
8§x8 28.95030
SSSF dx4 23.65015 23,65t
6x6 23.64658
8§x8 23.64513

S—Simply-supported edge.
F—Fixed edge.
+R. D. Blevins (1979).

CONCLUSIONS

Bicubic spline functions are used to construct moments, twisting moments and dis-
placements as ficld variables for the analysis of plate vibrations in this paper. Multivariate
spline cigenvalue equations are derived based on the Hellinger-Reissner mixed encrgy
principle. The present results demonstrate the good convergence characteristics of the
multivariable spline clement method. The spline functions also have the desired properties
assoctated with piccewise polynomials so that the present method has a high degree of
accuracy for the vibration analysis of plates.
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